Physics Research Areas

Research in the Department of Physics at Kennesaw State University spans all the traditional Physics subdiciplines, including Atmospheric Physics, AstrophysicsExperimental Particle PhysicsMaterials Physics, Optical Physics and Theoretical Particle Physics.

Read more about each specific subdiscipline below, as well as links to faculty who specialize in those areas.

  • Featured Faculty Research

  • Featured Faculty Research

  • Experimental Particle Physics is the study of the detection and measurement of the basic particles which make up the material world at its most fundamental level. These fundamental particles include the six quarks and the composite particles formed from their combinations (such as the proton and the neutron), the three charged leptons (including the electron), the three neutrinos, the gauge bosons (the photon, W, Z, and gluon) as well as the Higgs Boson. These particles make up the Standard Model of particle physics, and detailed measurement of their properties is one of the goals of the field, along with searches for new and undiscovered particles beyond the Standard Model.

    The Kennesaw State Experimental Particle Physics research area focuses on precision measurements of rare decays of the b and c quarks; since 2012 Kennesaw State has been a member institution of the Belle and Belle II collaborations which are dedicated to performing these particular measurements. The Belle and Belle II collaborations are based at the KEK Laboratory in Tsukuba, Japan; both of these collaborations are made up of laboratories and universities from around the world.

    Featured Faculty Research

  • Materials Physics is the study of solid materials for both a fundamental understanding of the relationship between the composition, structure and properties of the materials as well as for their potential technological applications. Our research includes the synthesis and analysis of amorphous materials (like glass), semiconductors, metals, composites and even polymers. These materials are being studied for applications in energy conversion, biology, magnetics, and optics.

    Featured Faculty Research

Publications

©