CSMConnect is the College of Science and Mathematics (CSM) biannual newsletter designed to keep you informed of the latest activities and developments going on in the college. CSM values the networks developed with partners on and off campus. You are important in our network of partners. CSM provides students a high quality and innovative academic experience through our six minor programs, seven undergraduate degrees, and three masters programs. Students can create their own learning experience through provided tracks, research, and specialized courses. CSM is soaring into the next level of national prominence through cutting-edge research.

Creative Designer
Leah Bishop

Copy Editors
Leah Bishop
Vickie Burris

Contributors
Robert Godlewski, University Relations
Tiffany Capuano, University Relations
Joëlle Wells, Office of Research

Photographers
David Caselli, University Relations
Sara Blunk Franka, CSM
Lauren Kress, University Relations
Joëlle Wells, Office of Research

Dean
Mark Anderson, Ph.D.

On the cover

Dr. David Garofalo,
Assistant Professor of Physics
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean’s Welcome</td>
<td>4</td>
</tr>
<tr>
<td>College Briefs</td>
<td>5</td>
</tr>
<tr>
<td>HHMI Awards $1 million Grant to KSU</td>
<td>6</td>
</tr>
<tr>
<td>Never Too Late</td>
<td>8</td>
</tr>
<tr>
<td>Finding New Clues</td>
<td>10</td>
</tr>
<tr>
<td>Birla Carbon Scholars Recognized</td>
<td>12</td>
</tr>
<tr>
<td>The Road to Discovery</td>
<td>14</td>
</tr>
<tr>
<td>On Top of the World</td>
<td>16</td>
</tr>
<tr>
<td>2018 Faculty/Staff Distinguished Awards</td>
<td>18</td>
</tr>
<tr>
<td>2018 Undergraduate Scholarship Reception</td>
<td>19</td>
</tr>
</tbody>
</table>
Dean’s Welcome

2018 has been an incredible year for Kennesaw State University and the College of Science and Mathematics. In July, KSU welcomed our new President, Dr. Pamela Whitten. President Whitten hit the ground running, and established two areas of emphasis for the University: (1) to have an unyielding emphasis on student success, and (2) becoming the best R3 University in the country.

The College of Science and Mathematics is making significant progress toward both goals. In June, KSU, led by the College of Science and Mathematics, was one of 23 Universities in the Nation to be awarded a 5-year $1 million grant from the Howard Hughes Medical Institute (HHMI) as part of their Inclusive Excellence program in 2018. Colleges and Universities cannot be excellent if all students are not succeeding. This program at HHMI has a goal of improving the outcomes success of all students in science courses and disciplines. The departments in the College are each taking a critical look at their program’s curriculum, with an objective of creating better horizontal and vertical integration of courses, and involving the student’s perspective when developing curriculum.

During 2018, faculty in the College had 18 National Science Foundation (NSF) and 2 National Institutes of Health (NIH) awards that were active. KSU as a whole had 21 NSF awards and 2 NIH awards – that is, the bulk of funding from federal agencies was made to faculty in the College of Science and mathematics. To support the research efforts of these funded projects, more undergraduate and graduate students are engaging in independent research in the College than at any previous time in KSU history. As the University grows to achieve the vision of being the best R3 institution in the country, student involvement in research and growing the funding to the University will also need to increase.

This is an exciting time of growth for KSU and for the College of Science and Mathematics. As the University works toward achieving President Whitten’s goals, the College is doing its part by having a clear focus on student outcomes success growing our research productivity.
With offices right across from each other, Nikolaos Kidonakis and Marco Guzzi can easily discuss and collaborate when tackling fundamental questions of the universe. Now the two theoretical particle physicists have even more in common, as each has been recently awarded an National Science Foundation (NSF) grant within a week’s time that will fund their individual projects to improve theoretical predictions in particle production experiments conducted at the Large Hadron Collider (LHC).

Kennesaw Ladies in Physics hosts Women in Physics Social

Kennesaw Ladies in Physics (KLIP), along with their advisor Dr. Kisa Ranasinghe, hosted the “Women in Physics Social” on Saturday, September 15, to build a network among women in physics. Over 40 physicists from around the state attended, including representatives from Georgia State, Spelman College, Emory University, and Georgia Tech, as well as women from associated industries including patent law. Topics discussed during the meeting included the low number of women in physics and the different challenges women face.

Cultivating Innovation

Whether it’s probing fungal diseases in bats or better ways to cultivate mushrooms and brew beer, a vibrant new research lab is driving scientific innovation at Kennesaw State. At the heart of the BioInnovation Lab is a mission to understand complex problems involving microorganisms and find new ways of solving those problems through applied research. At its helm is research scientist Chris Cornelison, who opened the lab less than two years ago. This evolving research hub has attracted an enthusiastic group of researchers this year, including a post-doctoral researcher, two graduate students and 10 undergraduates in biology and chemistry.
Howard Hughes Medical Institute Awards $1 million Grant to KSU

Funds for improving Inclusive Excellence in STEM

Led by the College of Science and Mathematics (CSM), Kennesaw State University was awarded a $1 million grant by the Howard Hughes Medical Institute (HHMI) to improve STEM (Science, Technology, Engineering and Mathematics) diversity and inclusion, with a focus on increasing science degree success for African-American and Hispanic students.

Kennesaw State was one of 33 chosen from among 594 colleges and universities nationwide. All of these schools submitted plans to develop more inclusive learning environments in STEM over the last two years. The only university in Georgia to make the cut, Kennesaw State joins 56 other grantees across the country to win funding from HHMI.

“This grant recognizes the excellent strides the College of Science and Mathematics has made over the years to improve educational opportunities for all our students,” said Interim President Ken Harmon.

HHMI’s Inclusive Excellence initiative seeks to engage all students in science, regardless of race, ethnicity or socio-economic background. According to HHMI, those students could include underrepresented ethnic minorities, first-generation college students or working adults with families.

“The faculty of Kennesaw State’s College of Science and Mathematics have been working diligently the past several years to improve student outcomes in the foundation STEM courses,” said CSM Dean Mark Anderson. “This will help us broaden participation in all the areas of science a student may choose to pursue, everything from studying about the origins of the universe, to changes in the environment, to zoology.”
In making the announcement, HHMI noted that each of the 33 colleges and universities named today and the 24 selected in 2017 “will work with HHMI and its partner, the American Association of American Colleges and Universities (AAC&U), to engage in the process of culture change.”

“This initiative is about encouraging colleges and universities to change the way they do business – to become institutions with a significantly greater capacity for inclusion of all students, especially those from nontraditional backgrounds,” said HHMI President Erin O’Shea.

The five-year grant provides $200,000 in annual funding to KSU to support faculty development, changes in teaching methods, and for redesigning classroom experiences to improve learning opportunities for all students.

“What this funding will allow us to do, is to create a culture of learning where our faculty are more accessible and students can engage science through active learning in the classroom,” said Scott Reese, assistant dean for curriculum and associate professor of biology. “In short, we will be better able to reach every science student at every step along the way of their science education.”

HHMI’s 57 grantee institutions are expected to share information with each other to learn from the best practices. These may include revising curricula, changing faculty reward structures, and providing training in cultural and racial bias awareness.

In addition to Kennesaw State, some of the grantees include: California State University, Los Angeles; North Carolina State University; Syracuse University; Utah State University; and Virginia Commonwealth University.

About the Howard Hughes Medical Institute

Based in Chevy Chase, Md., the Howard Hughes Medical Institute (HHMI) is the largest private, nonprofit supporter of science education in the United States. HHMI is a science philanthropy whose mission is to advance basic biomedical research and science education for the benefit of humanity.
Never Too Late

Love of physics sparks return to college

After working for more than 30 years, Tony Niebank hit the pause button in his career to return to college and complete his bachelor’s degree in physics in Spring 2018.

Niebank had pursued a successful career in program and project management from one side of the country to the other for Delta Airlines, The Home Depot and a small software start-up called Nead Werx. He had always wanted to complete his education, but work and family demands stood in the way.

“Early on, it was just getting motivated to come back to school in the first place,” Niebank said. “I hadn’t taken a math course in nearly 25 years, and I was about to jump into physics as a field of study. Honestly, I had no idea if I would be successful or not.”

Fortunately, he found a welcoming environment at Kennesaw State.

“I have to say that all of the professors I had early on encouraged me to continue and provided help whenever I asked for it,” the 51-year-old explained. “As the courses got more challenging, working full time while pursuing a physics degree became untenable, and I had to choose whether or not to continue, so I chose to pause my career and pursue my degree full time.”

It was the spring semester of 2017, and the Smyrna resident not only threw himself into his studies, he also found time for lots of interesting extracurricular activities. “I have endeavored to make the most of my experience here at KSU,” Niebank said. “I have had the opportunity to share the observation of a total solar eclipse and discuss its significance with experts in astrophysics.
“During the eclipse last summer, I joined several students and professor David Garofalo from the physics department, on a trip to Andrews, N.C., to observe the eclipse at a point of totality,” said Niebank. “We were able to take a couple of telescopes and capture some great pictures of the entire eclipse. The two and a half minutes of total eclipse is something I will never forget.”

A learning assistant in the College of Science and Mathematics, Niebank also found time to work with faculty and other students to establish a project to build a high-energy subatomic particle detector.

“I was able to present my research in high-energy particle physics at a statewide science competition, and won first place, much to my surprise,” he said.

Niebank’s research project, “Cosmic Ray Muon Rate Measurements at KSU,” investigated the physical characteristics of cosmic rays that constantly bombard earth and demonstrated how they create subatomic particles that move at nearly the speed of light.

“The number of these cosmic ray muons which pass through us is dependent on our altitude, because they decay rather quickly back into electrons,” he said. “I chose to research and confirm this altitude dependence and their decay characteristics.”

Science projects are a natural for Niebank, who enjoyed participating in the annual Physics Day event on the Marietta Campus. “We invite elementary and middle school students to come and experience several physics demonstrations,” said Niebank. “The idea that I had an opportunity to spark the imagination of a few young kids and encourage them to investigate science was very rewarding.”

Niebank has shared his love of science and education with his son Ryan, who also is attending Kennesaw State and majoring in electrical engineering. “I have encouraged him to pursue a field he has a passion for, but to also understand that he needs to earn a living in that field.”
Finding New Clues

Researcher sheds light on mysteries of black holes

New research into black holes may shed light on the origins of life in the universe, according to David Garofalo, Kennesaw State University assistant professor of physics. Garofalo recently co-authored a paper published in the Monthly Notices of the Royal Astronomical Society.

“Our research shows that the breaking up or ripping of magnetic fields near black holes may explain the way jets of energy come from black holes or contribute to that understanding,” said Garofalo, who conducts research in black hole astrophysics.

“A black hole is a region inside of a boundary where time as we know it has stopped,” Garofalo said. “Starting in the early 1960s, astronomers discovered that 10 percent of galaxies are really strange in that they are emitting huge amounts of energy.”

According to Garofalo, the largest black holes detected exceed 10 billion times the mass of our Sun.

Scientists are able to see the radio emissions produced by charged particles spiraling around the magnetic fields of black holes,” he said. “The active region more generally is not just made up of the jet but also of the hot material falling into the black hole. These black holes are sending out energy, and by using X-ray surveys we can see the jet is a high-energy gamma ray. We can also see it in some wavelengths of light emitted, too.”
Why some active galaxies produce jets while others don’t remains a mystery to scientists.

“Individual researchers, like myself, might claim they know why some active galaxies produce jets so now our goal is to convince others of that,” he said.

NASA’s Chandra X-ray Observatory and several telescopes confirmed the existence of these jets from black holes earlier this year. The space agency even had a little fun describing the news, saying “astronomers have caught a supermassive black hole snacking on gas and then “burping” — not once but twice….”

Garofalo said his team’s research into the magnetic fields may explain “the cyclical behavior of smaller black holes by these magnetic fields being ripped apart near black holes.”

“The universe appears to follow certain cycles and it now seems reasonable that black holes are part of that cycle,” he said. “Ultimately, we might find that life in the universe is tightly connected to powerful outflows from black holes.”

Garofalo, who did postdoctoral work as a NASA fellow and as a Caltech Postdoctoral Scholar at the Jet Propulsion Laboratory in Pasadena, said the largest black holes, termed “supermassive,” contain more mass than one million suns combined.

“Astronomers think every large galaxy has one such black hole at its center and millions of black holes in each galaxy.”

Formed some 13.6 billion years ago – about 200 million years after the Big Bang – our own Milky Way is one of these large galaxies. Its supermassive black hole is called Sagittarius A.

“In the long term, we want to understand how much black holes matter to the whole universe and to life in particular, Garofalo said. “This matters to the curious person because it answers questions about where we came from, how we emerged in the universe.”

This has been one of the central themes guiding Garofalo’s research for more than a dozen years now.

“I study black holes because I was always interested in applications of the theory of relativity, but the original idea for this specific research should really be credited to my co-authors. My contribution involved producing the mathematical structure appropriate for a near-black hole study of the process.”

The math involves something called “scale invariance.” Simply put, it means that no matter whether you are researching a small black hole or a supermassive one, they will behave similarly.

“If our results hold, scale invariance implies something about the super large black holes which would give us new insights into the behavior of the most spectacular jets observed in the universe,” he said.

However, according to Garofalo, many in the scientific community do not subscribe to this holistic approach to black holes.

“The universe appears to follow certain cycles and it now seems reasonable that black holes are part of that cycle. Ultimately, we might find that life in the universe is tightly connected to powerful outflows from black holes. In the long term we want to understand how much black holes matter to the whole universe and to life in particular,” Garofalo said.
Kennesaw State University (KSU) junior Hope Didier’s research project in the McMurry Lab into stopping the spread of cervical cancer cells won the Top Poster Award at the Birla Carbon Symposium, at which the College of Science and Mathematics (CSM) officially recognized the 10 new Birla Carbon Scholars.

“Providing deeply impactful learning opportunities is a high priority at Kennesaw State University. The rapidly expanding opportunities for undergraduate research at KSU have become valuable experiences for students across the university,” said Kennesaw State President Pamela Whitten, who addressed the large gathering in the Carmichael Student Center’s University Rooms on the Kennesaw Campus. “Opportunities for discovery offer an exciting trajectory for our students, whether they are research in a lab, exploration in a community setting or creation in a studio. Congratulations to our outstanding ten Birla Carbon Scholars.”

Didier of Peachtree City, took the top prize for her research involving the design and subsequent delivery of viral proteins into living cervical cancer cells, which, with future exploration, may serve as a potential alternative option for the treatment of cervical carcinomas.

“I spent the summer doing research that involved the delivery of a viral protein into the cancer cells via a cell-penetrating adaptor system,” she said. “My research showed certain proteins could cause the death of the cancer cells.”

Didier plans to continue her research at KSU, using confocal microscopy to assess the efficacy of different proteins. After she graduates in 2020, she hopes to attend medical school and continue her work in the clinical research field.

Along with the $4,000 stipend each scholar received, Didier received an additional $2,000 in travel funds to present her research at a national or regional conference of her choice.

The scholars program was launched in April 2014 with a $250,000 pledge from Birla Carbon for a five-year annual gift of $50,000 to support research opportunities for CSM students. Each year, 10 students receive a $4,000 stipend for summer research in science, mathematics or physics.

This year, scholars worked side-by-side with faculty researchers on projects ranging from gene manipulation in epithelial cells in human kidneys to gene expression in cancer cells, from energy storage performance of synthesized porous carbon materials to worker safety in energy production, and more.

“Many of our students are not able to explore summer research programs because they must work full time between the spring and fall semesters,” said CSM Dean Mark Anderson. “This stipend allows them time and financial freedom to expand their research skills outside of the classroom and continue Kennesaw State’s
As we are now completing this our fifth year, we look forward to continuing this relationship for another five years.

- John Loudermilk, Birla Carbon, COO

Since 2014, funding provided by the Marietta-based chemical manufacturer has allowed 50 Birla Carbon Scholars to participate in summer research opportunities. Loudermilk said several Kennesaw State graduates are currently working at the firm’s Marietta lab and technology center.

Birla Carbon, a flagship business of the $45 billion Aditya Birla Group, is the world’s leading sustainable manufacturer and supplier of carbon black additives.

Loudermilk and Terence Norman, director of human resources, along with several judges from Birla Carbon, reviewed the students’ posters summarizing their research.

“These are all very impressive projects that the students were given the opportunity to work on full time, thanks to the generous support of Birla Carbon,” Anderson said.

This year’s scholars and their faculty mentors include:

Birla Carbon Scholar
- Sarah Beauvais
- Olivia Brooks
- Hope Didier
- Trae Dunn
- Liana Gerhardt
- Daisy McGrath
- Kimberly Meyberg
- Michael Reynolds
- Sagi Sharier
- Alyssa Venn

Faculty Mentor
- Ramya Rajagopalan
- Anton Bryantsev
- Jonathan McMurry
- Martin Hudson
- Altug Poyraz
- Tsai-Tien Tseng
- Thomas Leeper
- David Joffe
- Meghan Burke
- Joe DeMaio
The Road to Discovery

New patents are destination for groundbreaking research

The road to discovery can be a long, winding route with many obstacles along the way. KSURSF, which stands for the Kennesaw State University Research and Service Foundation, is the place where innovations and inventions come to life. Think of KSURSF as the University’s on-campus conduit to the patent office.

Established a little over 12 years ago, KSURSF has paved the way for three patents awarded by the U.S. Patent Office, with many more in the pipeline. “Kennesaw State is beginning to take innovative research in new directions, as it has multiple patents,” said Don McGarey, KSURSF’s chief operating officer. “The efforts of the Kennesaw State University Research and Service Foundation have been crucial to moving KSU into the realm of innovation leadership.”

McGarey said the most active research areas currently include: biomedical sciences and engineering, traffic and transportation engineering, and software engineering.

FIRST STEPS

KSURSF’s first scientific patent was awarded in December 2016 to the late John Salerno, then the Neel Distinguished Chair of Biotechnology, for innovations in biotechnology. Salerno was instrumental in filing several inventions and is widely credited with beginning the process of developing a model for developing and moving inventions to reality at Kennesaw State.

Salerno’s patented invention consisted of special mutagenic plasmids, tiny, independent, self-replicating single units of DNA at the center of life called deoxyribonucleotide molecules. Aided by his student lab assistants, Salerno, at the time of his death, was working on the development of a test kit that other scientists could use to speed up their genetic experiments.

Subsequent patents emanating from KSURSF were bestowed and most recently for an affordable chemistry flask holder with a non-slip base.

IN THE PIPELINE

KSURSF’s portfolio currently includes a little more than two dozen additional projects in the life sciences, engineering, computing, business and other areas. Of those, 13 have been filed with the U.S. Patent Office and the Patent Cooperation Treaty, which allows a filer to
seek patent protection in three dozen countries simultaneously. Several more applications are expected to be filed this year.

Among those McGarey identified as some of the University’s “most prodigious researchers” are: Jidong Yang in civil engineering and Bill Diong in electrical engineering, who are “doing tremendous work” in the areas of traffic and transportation; Chao Mei of the College of Computing and Software Engineering with projects in virtual reality, including VR for autism treatment; Adriane Randolph in the Coles College with work on braincomputer interface; Hoseon Lee in electrical engineering; and Jonathan McMurry in chemistry who works in the biomedical sciences.

McMurry, who also serves as associate vice president for research, says Kennesaw State is seeking to develop a larger presence in intellectual property (IP), which could help attract talented researchers and grant dollars.

“Our flask holder design was developed based on a concept that Ben originally conceived,” Alexander said. “We were looking for an inexpensive way to support round-bottomed and pear-shaped glass flasks that are used in research and organic chemistry teaching laboratories. I took the design a step further to improve on the original design to increase functionality.”

Simply designed and inexpensive to produce, Alexander said the flask holder is made from sections of PVC pipe mounted on a cork base. This prevents the glass flask from touching the hard lab bench and potentially breaking. Also, the cork provides a non-slip base to prevent the holder from sliding on slick bench surfaces.

“Our flask holders can be painted to color code them or make them more aesthetically attractive,” Alexander said. “Plus, they’re inexpensive to make and easily assembled.” The retail cost is expected to range from about $1 to $6, depending on the size of the flask holder and shape.

“Cost-wise, our holder would be commercially competitive,” said Alexander. “To my knowledge and based on the fact that our patent was granted by the U.S. patent office, there are no commercially available flask holders that have the design and benefits of ours.”
KSU professor ranked as No. 1 physicist

For fans of the CBS hit “The Big Bang Theory” Nikolaos Kidonakis is their real-life Sheldon. Unlike the fictional Caltech scientist, however, this Kennesaw State University theoretical particle physics professor (and genuine Caltech grad) has gained international recognition by CERN physicists in their newly released “Biblioranking fundamental physics.”

Kidonakis is ranked as the No. 1 physicist, since 2010, in fundamental physics in a worldwide comprehensive study by CERN physicists who use the open-source INSPIRE bibliographic database to rank papers and physicists around the world. CERN stands for the European Laboratory for Particle Physics.

In addition to Kidonakis, Marco Guzzi, who joined Kennesaw State last year as assistant professor of theoretical particle physics, is a co-author on a paper that has been ranked No. 8 as a top-referred paper among all papers with fewer than 10 authors since 2010.

“Nick was ranked No. 1 for his work since 2010 under three different methods: individual citations, paper rank, and overall author rank,” said Kevin Stokes, professor and chair of the department of physics. “The individual citations are particularly relevant; this is the number of times Nick’s work has been cited by other scientists which is probably the best external measure of the quality and significance of his work.”

The world’s most complete physics database, INSPIRE contains more than 1.27 million scientific papers by more than 70,000 authors and 7,500 institutions.

“This means a lot because they are citing his results, his insights, his work, his calculations,” Stokes said. “To put this in perspective, he ranks ahead of scientists from Fermilab, Universitat Bonn, Imperial College London, Institute for Advanced Study (Princeton), Harvard University and Stanford University.”

The study, which includes developments in physics over the past century and beyond, covers many subfields of fundamental physics from high energy theory and experiment to nuclear theory and experiment to astrophysics, and many more.

“I’m on the INSPIRE database every day. It’s an immense digital library where I can find links to abstracts or read the latest papers in my field,” Kidonakis said. “So, of course, I am honored by this distinction because I have been ranked
No. 1 in fundamental physics, and also No. 1 in my subfield of theoretical particle physics since 1993."

Kidonakis’ research involves the elementary particles in physics, including the top quark and the Higgs boson, which the media often refers to as the “God particle.” His calculations have been used by scientists running experiments at the Large Hadron Collider at CERN near Geneva, Switzerland.

In July 2012, scientists at CERN made news around the world when, after analyzing data from a series of experiments, they announced they were certain that the Higgs boson had been discovered. This offered scientific proof, supporting the work of Kidonakis and other physicists.

“I do what I do because I love it. As Kennesaw State becomes more and more research-oriented, people are starting to notice the university, and now it has a Carnegie research designation which is a major step up,” he said.

For non-scientists, it’s Kidonakis’ work on the Higgs boson — as part of both Standard Model calculations and beyond the Standard Model physics — that most people can relate to.

“The next question is whether the Higgs boson that we found is the Standard Model Higgs or a more exotic kind of Higgs particle,” he said.

A fan of “The Big Bang Theory” sitcom, Kidonakis appreciates how the show’s popularity has inspired so many budding physics students.

He also has been known to channel some of “Big Bang’s” lead character Sheldon’s trademark sarcasm on occasion around the family dinner table.

“My wife teaches math and my teenage sons, who are still in high school, are studying college math. So, sometimes my sons will try to get me on some math problem,” Kidonakis said. “That’s when I remind them, ‘INSPIRE says I’m No. 1.’”

Kidonakis joined Kennesaw State in 2004, following his work as a Marie Curie Research Fellow in the Cavendish Laboratory at the University of Cambridge. He has been supported with research grants from the National Science Foundation since 2006.

While at KSU, he has been recognized with several major awards including the Outstanding Research and Creative Activity Award, KSU Foundation (2016) and the Foundation Prize in 2014, 2012, 2008 and 2006. He was a finalist for the KSU University Distinguished Professor award in 2017 and won the Kennesaw State University Distinguished Research and Creative Activity Award in 2014 and the Distinguished Scholarship Award in 2008.

Kidonakis, who completed his B.S. at Caltech, received his master’s from the University of Cambridge and, in 1996, his Ph.D. from the State University of New York at Stony Brook.
2018 Faculty/Staff Distinguished Awards

Congratulations to all the 2017-2018 CSM Faculty & Staff Distinguished Award recipients!

Service Award:
Heather Abbott-Lyon, Ph.D

Professor Award:
Joseph DeMaio, Ph.D

Mentoring Award:
Sherry Ni, Ph.D

Staff Award:
Matthew Rosenberg

Teaching Award:
Janet Shaw, Ph.D

Scholarship Award:
Michael Van Dyke, Ph.D

Part-time Teaching Awards:
Max Crocker, Ph.D., Limited Term Assistant Professor of Biology
Ann Denton, Part-Time Instructor of Chemistry
Nelda Hadaway, Ph.D., Part-Time Assistant Professor of Mathematics
Melony Parkhurst, Part-Time Instructor of Statistics
Student learning experiences are enhanced by contributions provided to the college to support our student scholarships; improve the margin of excellence; and support research endeavors and professorships to help Kennesaw State University provide a strong environment for recruitment and retention of promising faculty.

For philanthropic opportunities, contact the CSM Director of Development at giving@kennesaw.edu or visit giving.kennesaw.edu.

To donate to the college, visit bit.ly/GivetoCSM.